On the regularity of a graph related to conjugacy classes of groups

نویسندگان

  • Mariagrazia Bianchi
  • Marcel Herzog
  • Emanuele Pacifici
  • Giulio Saffirio
چکیده

A well-established research area in finite group theory consists in exploring the interplay between the structure of a group G and certain sets of positive integers, which are naturally associated to G. One of those sets, denoted by cs(G), is the set of conjugacy class sizes of G. In order to have a better understanding of the arithmetical structure of cs(G), it is useful to introduce two kind of graphs. One of them is the common divisor graph Γ(G), whose vertex set is cs(G) \ {1}, and two vertices are adjacent if and only if they are not coprime numbers. The other one is the prime graph ∆(G): in this case the vertices are the primes dividing some class size of G, and two vertices p, q are adjacent if there exists a class size of G that is divisible by pq. As stated in [1] we conjecture that , for every integer k ≥ 1, the graph Γ(G) is k-regular if and only if it is a complete graph with k + 1 vertices: in this poster we outline the fact that the conjecture is true for k ≤ 4. Every group considered in the following discussion will be a finite group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Regular Power Graph on the Conjugacy Classes of Finite Groups

emph{The (undirected) power graph on the conjugacy classes} $mathcal{P_C}(G)$ of a group $G$ is a simple graph in which the vertices are the conjugacy classes of $G$ and two distinct vertices $C$ and $C'$ are adjacent in $mathcal{P_C}(G)$ if one is a subset of a power of the other. In this paper, we describe groups whose associated graphs are $k$-regular for $k=5,6$.

متن کامل

A NOTE ON THE COMMUTING GRAPHS OF A CONJUGACY CLASS IN SYMMETRIC GROUPS

The commuting graph of a group is a graph with vertexes set of a subset of a group and two element are adjacent if they commute. The aim of this paper is to obtain the automorphism group of the commuting graph of a conjugacy class in the symmetric groups. The clique number, coloring number, independent number, and diameter of these graphs are also computed.

متن کامل

Classification of solvable groups with a given property

In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.

متن کامل

On the Szeged and Eccentric connectivity indices of non-commutative graph of finite groups

Let $G$ be a non-abelian group. The non-commuting graph $Gamma_G$ of $G$ is defined as the graph whose vertex set is the non-central elements of $G$ and two vertices are joined if and only if they do not commute.In this paper we study some properties of $Gamma_G$ and introduce $n$-regular $AC$-groups. Also we then obtain a formula for Szeged index of $Gamma_G$ in terms of $n$, $|Z(G)|$ and $|G|...

متن کامل

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS

Suppose $G$ is a finite group, $A$ and $B$ are conjugacy classes of $G$ and $eta(AB)$ denotes the number of conjugacy classes contained in $AB$. The set of all $eta(AB)$ such that $A, B$ run over conjugacy classes of $G$ is denoted by $eta(G)$.The aim of this paper is to compute $eta(G)$, $G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}$ or $G$ is a decomposable group of order $2pq$, a group of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012